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Abstract- This paper tackles the problem of the position 

measurement and estimation techniques in the robot navi-
gation field based on Kalman filters. It presents the prob-
lem of the position estimation based on odometric, infrared 
and ultrasonic measurements. Further on deals with the 
theoretical and practical aspects of the state estimation 
based on Kalman filtering techniques. From the wide range 
of derivatives of the Kalman filtering technique there are 
detailed the Extended Kalman filter and the one based on 
Unscented Transformation. In the second part of the paper 
is concluded with the results of the comparison between the 
different filtering algorithms and the further perspectives 
regarding this subject. 

Keywords- Odometric, ultrasonic, infrared measurement, 
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I.  INTRODUCTION 

The robot localization problem represents a key aspect in 
making a robot system a real autonomous one. It is essential for 
the robot to know where it is in order to determine what the is 
next step to perform. For the localization problem, the robot 
has access to the information from the localization sensors, the 
feedback about the driving action in the surrounding word. 
Based on this information the robot has to estimate its position 
as accurately as possible. 

A.  General Problem Presentation 
The existence of the uncertainty in both the model and the 

sensing of the robot corrupt the localization problem. However, 
the uncertainty in the information can be reduced by applying 
an optimal filtering algorithm [1].  

The Kalman Filter is a well-known estimation technique in 
the filed of estimation theory that combines the information of 
different uncertain sources in order to estimate the state of the 
robot. These types of filter have been successfully applied in a 
series of application from the field of navigation including the 
mission to Mars or missile tracking/guidance [1]. 

The Kalman filters covered in this paper are the Linear Kal-
man Filter (LKF) for LTI systems, the Extended Kalman Fil-
ter(EKF) which is suitable also for nonlinear systems, and the 
Unscented Kalman Filter (UKF) based on the Unscented trans-
formation. The UKF can also be applied for systems with dis-
continuities and is directly comparable to second order Gauss 
filter [3]. Also in contrast with the original Gaussian noise dis-

tribution assumption for the LKF and EKF, the UKF does not 
rely on such restriction making it even more general. 

B.  Proposed Solution 
The proposed solution presented in this paper deals with the 

state estimation problem in the field of mobile robots. There 
are presented some special aspects regarding this class of prob-
lems. 

II.  KALMAN FILTERS 

The Kalman filter [4][5] can be shortly described as an op-
timal recursive data processing algorithm for systems corrupted 
by noise.  

Whenever the state of a system needs to be estimated from 
noisy sensor information, some kind of state estimator is em-
ployed to fuse the data from different sensors together to pro-
duce an accurate estimate of the true system state. When the 
system dynamics and observation models are linear, the mini-
mum mean squared error (MMSE) estimate may be computed 
using the Linear Kalman�Filter�[5]. 

Although the Kalman filtering technique is not limited only 
to the state estimation problem having also important aspects in 
the parameter estimation domain [7], this paper deals only with 
the parameter estimation part of the problem. 

A.  Kalman Filter for Linear Systems 
The LKF addresses the general problem of trying to estimate 

the state of a discrete-time controlled process represented on 
Figure 1 that is governed by the linear equation given by (1) 
and (2)  

 ( )1 , ,k k k kx F x u w+ =  (1) 

 ( ),k k ky H x v=  (2) 

 
Figure 1 Discrete-time nonlinear dynamic system 

 



 

 

The generic representation of the system in the state space is 
given by (3) and (4). 

 1 1 1k k k kx Ax Bu w− − −= + +  (3) 

 k k kz Hx v= +  (4) 
The random variables w and v represent the process and 

measurement noise, and it is supposed that they are white, in-
dependent noises with a Gaussian distribution and they have 
the covariance R and Q. 

The vector x represents the states of the system while z re-
lates the state of the measurements and u is the input vector for 
the system. The matrices A, B, H are assumed to be constant, 
although they may change from in time in real life applications. 

For the further notation it is defined the “super minus” for 
the prior state estimate at time step k and his state estimate is 
based on the knowledge of the process prior to step k. The 
posterior state estimate is computed taken into account also the 
measurement information from the step k.  

 ˆk k ke x x− −≡ −  (5) 

  ˆk k ke x x≡ −  (6) 
The two kinds of estimates are in fact related to the two 

phases of the Kalman filtering algorithm: the time update (pre-
diction) and the measurement update (correction) [5]. 

The first phase of the Kalman filter can be summarized in 
the equations described in (7) and (8) 

 1 1ˆ ˆk k kx Ax Bu−
− −= +  (7) 

 1
T

k kP AP A Q−
−= +  (8) 

The Q represents the covariance of the process noise v while 
with R is denoted the covariance of the measurement noise w. 
These values also might change with time but in this algorithm, 
they are supposed to be constant, while kP−  represents the es-
timated error covariance at time k. 

After the time update step in the correction step there are up-
dated the priory estimates. 

 ( ) 1T T
k k kK P H HP H R

−− −= +  (9) 

 ( )ˆ ˆ ˆk k k kx x K z Hx− −= + −  (10) 

 ( )k k kP I K H P−= −  (11) 
The Kk matrix is called the Kalman gain and is chosen in 

such a way that minimizes the a posteriori error covariance kP . 
The difference in (10) is called the measurement innovation, 

or the residual. The residual reflects the difference between the 
predicted measurement and the actual measurement. 

At the first step of the algorithm the values of x and P are in-
itialized with the prior knowledge about the system. It is not a 
trivial task to tune the values of the covariance R and Q. These 
values influence the performance of the filter although there is 
no direct method of choosing them. In real time applications it 
is often the case that they are selected in a trial and error me-
thod. Details for selecting the covariance values for certain 
measurement types will be shown in the section describing the 
experimental setup.  

B.  Extended Kalman Filter 
As it was described in the previous subsection the Kalman 

filter addresses the general problem of trying to estimate the 
state of a discrete-time controlled process that is governed by a 
linear stochastic difference equation.  

But in reality instead of pure linear systems in the most of 
the cases the equations describing the systems are nonlinear. 
Some of the interesting and successful applications of Kalman 
filtering have been used for the nonlinear systems. A Kalman 
filter that linearizes about the current mean and covariance is 
referred to as an Extended Kalman filter or EKF [4]. 

The most common approach for the nonlinear systems is 
simply to linearize all nonlinearities in the models so that af-
terwards the linear Kalman filter can be applied. The lineariza-
tion is done by computing the Jacobian of the matrices A, B, C, 
D as follows: 
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 Although the EKF is widely used in the control community 
it is difficult to implement, difficult to tune, and only stable for 
systems which are almost linear on the time scale of the update 
intervals [10]. 

C.  Unscented Kalman Filter 
Many difficulties from the EKF algorithm emerge from the 

Jacobian matrices that are calculated at the linearization phase. 
The UKF proposes a derivative free alternative for this type of 
filtering first being introduced by Julier et al [9][10] and further 
developed for state estimation and parameter estimation pur-
poses by Merwe et al [7][11][12]. 

Julier and Uhlmann showed the substantial advantages of the 
UKF in the field of nonlinear control. The basic difference be-
tween the EKF and UKF emerges from the way that the Gaus-
sian random variables (Grv) are propagated through the nonli-
near system. While in the case of the EKF, the Grv is propagat-
ed analytically through the system by a first order linearization 
of the system in the case of the UKF this is performed using a 
deterministic sampling approach. The state distribution is also 
in this case represented by a Grv, but the distribution is 
represented by a set of sample points called sigma points. 
These sigma points capture the true mean and covariance of 
any nonlinear system, making the UKF directly comparable 
with a second order Gaussian filter. Furthermore, the nature of 
the filter does not require the calculation of Jacobians and the 
computational effort is the comparable with effort of EKF. In 
order to achieve this, the UKF uses the unscented transforma-
tion. 

The unscented transformation (UT) is a method for compu-
ting the statistics of a random variable that undergoes a nonli-
near transformation [10]. It is founded on the intuition that it is 
easier to approximate a Gaussian distribution than it is to ap-
proximate an arbitrary nonlinear function or transformation. 



 

 

Although the idea of using a set of representative points in or-
der to propagate the mean and covariance reminds the Monte-
Carlo type methods[14], there is an extremely important differ-
ence: the samples (sigma points) are not drawn at random but 
rather according a deterministic way.  

An n dimensional variable x with the mean x  and with the 
covariance xxP  is approximated by a 2 1n +  weighted sigma 
point set as follows: 
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where κ is scaling parameters and determines the spread of 

the sigma points around the mean x  and ( )( )xx
i

n Pκ+  

denotes the ith column of the matrix square root. 
The transformation itself is done by propagating the selected 

sigma points through the nonlinear function as follows: 
 [ ]i if=Y X  (15) 
The mean and the covariance of the weighted product is giv-

en by (16) and (17) respectively: 
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D.  An application - range reading with sonar 
Although one of the common transformations in the robotic 

field is related to the polar-Cartesian, this represents a major 
problem due to the nonlinear characteristic of the transforma-
tion. The transformation is given by (18) 
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Supposing that a mobile robot detect beacons in its environ-
ment using a range-optimized sonar sensor. The sensor returns 
polar information (range r and bearingθ ) which is converted 
to the Cartesian coordinates. The difficulty of the transforma-
tion arises from the physical properties of the sonar: even if the 
radial accuracy if fairly good, it has a rather poor bearing mea-
surement (standard deviation in range of 15 degrees). The large 
bearing uncertainty causes the linearity assumption to be vi-
olated [9]. 

In order to show the effect of this linearization violation, 
there was considered on the Figure 2 the linear transformation 
of a measurement corrupted with Gaussian random noise. The 
blue plot representing the direct linear transformation based on 
(18) causes the measurement points to be distributed on a ba-
nana shape curve. Even worse the mean of the distribution 

marked with a black circle is not coinciding with the real one at 
(0,1). 

As a solution to this kind of transformation it can be applied 
the UT. After applying the transformation on the same set of 
data, the result is according to the expected one: the mean of 
the transformation is coinciding with the real mean, and the 
covariance of the points is a circular one. 

 
Figure 2 The linear and unscented transformation - fragment 

Exploiting the advantages of the UT, the UKF algorithm at a 
given time instance k computes the priori estimates of the 
process state ˆkx− , its error covariance matrix kP−  and the esti-
mate for the output is computed using the following formulae: 

 
2

( )
, | 1

0

ˆ
n

m x
k i i k k

i
x W −

=

= ∑ X  (20) 

 
2

( )
, | 1 , | 1

0

ˆ ˆ
n Tc x x

k i i k k k i k k k
i

P W x x− −
− −

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑ X X  (21) 

 | 1 | 1 | 1,x n
k k k k k kH− − −⎡ ⎤= ⎣ ⎦Y X X  (22) 

 
2

( )
, | 1

0

ˆ
n

m
k i i k k

i
y W −

=
=∑ Y  (23) 

The steps presented in the formulas (20), (21), (22), (23) 
represent the time update equations from the traditional Kal-
man filter. The measurement update equations are presented in 
the form of (24), (25), (26), (27) and (28) 
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k k k y y kP P K P K= −  (28) 

As the algorithm is for the general case, it can be introduced 
special assumption in order to reduce from the computational 
effort or to enhance the performance of the filter [8]. 



 

 

III.  MODELING 

A.  Dynamic Model of the System 
The experiments were carried out on a P3 mobile robot plat-

form. The coordinate system for this kind of skid-steered ve-
hicle is presented on the Figure 3. 

 
Figure 3 The coordinate system and states for the P3 

The dynamic model is a terrain dependent and the parame-
ters for the model are determined experimentally [15]. 

The relation between the wheel velocities on the two sides of 
the robot and its actual velocity in the reference coordinate 
system is presented in relation(29) and (30) 

 
T

x y RV u u ω⎡ ⎤= ⎣ ⎦  (29) 

 [ ]
11 12

21 22

31 32

T
R L

a a
V a a u u

a a

⎡ ⎤
⎢ ⎥= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 (30) 

The following notations were used: 
• ,x yu u the velocity along the x and y axes with rela-

tion to the local coordinate system; 
• ,R Lu u the velocity on the right/left side wheels 

• Rω the angular velocity of the robot 

• ija experimentally determined coefficients 

B.  Odometer Positioning and Heading Estimation 
The position ,odo kx , ,odo ky and heading ,odo kω  at time step k 

are calculated using the equations (31), (32), (33), (34), (35). 
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 , , , 1R k R k R kd d d −= −  (34) 

 , , , 1L k L k L kd d d −= −  (35) 

The distances , , and R k L kd dΔ Δ denote the distances traveled 
at time step k by the right and respectively left side wheels. The 
W is the distance between the centers of the right and left 
wheels being a constant that can be measured. 

C.  Position and heading estimation using gyro and compass 
The estimated position of the relative yaw angle of the gy-

roscope and the absolute yaw angle of the compass can be giv-
en by the followings: 

 ( ) 1cosk k k k kx t v xω β −= ⋅ − +  (36) 

 ( ) 1sink k k k ky t v yω β −= ⋅ − +  (37) 
The v represents the velocity of the robot along the longitu-

dinal axes, while ω and β are the robot heading and the orien-
tation of the body of the robot. 

As the measurements with the compass in indoor conditions 
were rather poor quality the odometric model was adopted. 

IV.  EXPERIMENTAL SETUP 

In the following it will be described the steps that were per-
formed in a real life application in order to measure and esti-
mate the position of a robot. 

Both the infrared and ultrasonic measurements were carried 
out on a PIC microcontroller based data acquisition board. The 
data gather by the microcontroller were sent and processed on 
the PC through the serial port. The details of the experiments 
and the architecture of such a measurement system are de-
scribed in [16]. 

A.  Infrared Measurement 
The infrared (IR) measurements were carried out by 4 pairs 

of emitter-receiver mounted separately in order to measure the 
reflection of the emitted IR signal. As a general conclusion 
regarding the different angle between the emitter and receiver 
axis it can be said that the receiver has detected the emitted 
signal only if it was two axes were almost on the same line. 

Another aspect of the measurements is concerning the nonli-
nearities of the emitter-receiver pair. As it is visible on the Fig-
ure 4, there is almost a logarithmic dependency between the 
distance from where is reflected the IR signal and its intensity. 
Also the color of the object from which the signal is reflected 
has an important impact on the measurements. 

 
Figure 4 The IR measurement characteristics 
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B.  Low Level Ultrasonic Measurement 
The ultrasonic measurements were carried out using a pair of 

SR40 emitter-receiver. The received signal was sampled at 
200kS/s and the distance measurement was done in a 10-200 
cm range. 

The main difficulty in the measurement was the detection of 
the first echo in a noisy measurement environment with mul-
tiple echoes.  

A possible solution was proposed in [17] by computing the 
envelope of the received echo. A pair of emitter-receiver has a 
specific echo envelop for which discrete time modeling be giv-
en by (38). 

 ( ) 0

skt
Ts

s
ktA kt A e

T

τατ −⎛ ⎞
⎜ ⎟
⎝ ⎠−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (38) 

where the 0A is the echo of the amplitude, α  and T are spe-
cific parameters for the emitter-receiver pair; τ is the expected 
time of flight(TOF) and st is the sapling time for the measure-
ment. 

The measurement consists of the following steps: 
• acquisition of the echo;  
• perform a Hilbert transformation on the digital sig-

nal and take the module of the transformation in or-
der to determine the echo of the signal 

• based on the echo envelope, using parameter esti-
mation parts of the UKF algorithm it can be deter-
mined the parameters of the (38)  

• based on the determined parameters, the TOF it can 
be delimited with a better accuracy, or indirectly the 
distance of interest 
 

 
Figure 5 The echo detection with UKF – the measured signal (blue con-
tinuous), the Hilbert transformation (red envelope), estimate (black) 
As it can be observed on the Figure 5 the UKF estimation of 

the echo envelope fits well the reference envelope. In this way 
it can be delimited the TOF even in the case of the high signal 
to noise ratio (SNR) making the measurements more accurate. 

Information that can be useful for the navigation parts of the 
estimation is the variable accuracy of the US measurements: 
the absolute error of the measurement is dependent on the dis-
tance which is measured. This may help in choosing the dy-

namic covariance of the noise which corrupts the measure-
ments in this case. 

 
Figure 6 The absolute error variance for US measurments 

C.  Odometric Measurement 
The odometric measurements were carried out using the 

dead-reckoning system of the mobile robot platform and in-
cluding the inertial information [19]. 

As a proposed test procedure for the state estimation prob-
lem a 2X2 meter square was chosen as reference path for the 
mobile robot. The odometric model for the system is the one 
presented in (31), (32), (33). 

On Figure 7 is shown the obtained measurement and the es-
timation of the state of the robot which has a rather noisy tra-
jectory with certain drift in the orientation which is hard to 
detect even with the EKF. 

During the measurement phases the position of the robot was 
logged continuously. Based on the reference path and the 
measured position vector it was computed the EKF estimate. 
There were tested several values for the R and Q values as they 
influences the results of the estimation. As it was observed, 
changing these values during the experiments it may have a 
benefic effect on the performance, for instance the covariance 
for the angular velocity at the corners. The covariance for the 
odometric measurements were chosen upon the preliminary 
information about the relative errors of the sensors. 

 
Figure 7 Odometric measurement and EKF estimation 



 

 

V.  CONCLUSIONS 

In this paper the theoretical backgrounds of the state estima-
tion problem was presented with real life robot applications. It 
can be concluded that the Kalman filter and its extensions are 
important tools for mobile robot state estimation. The main 
advantages of the different extensions of the Kalman filter can 
be seen in the case of the nonlinear estimations. For the nonli-
near systems, several aspects have to be taken into account in 
applying the Kalman filter. One of the major problems was 
related to the computation of the Jacobian matrices. For this 
problem as a possible overcome it may be using UT, which 
eliminates the need of these computational efforts of the Jaco-
bian matrices. 

The different types of measurements are useful in case that 
the position estimation is not performed in a well-known me-
dium: there may be several aspects that may corrupt these mea-
surements. 

As future proposals, the most interesting is related to the 
multiple data fusion aspect. According to this there are planned 
the state estimation to be performed based on several different 
types of sensors using the Kalman filter. Based on this tech-
nique it will be possible to diminish the effect of the unwanted 
distortions in the position estimation. 
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